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Abstract. We consider a two-terminal Aharonov-Bohm (AB) interferometer with a quantum dot inserted
in one path of the AB ring. We investigate the transport properties of this system in and out of the Kondo
regime. We utilize perturbation theory to calculate the electron self-energy of the quantum dot with respect
to the intradot Coulomb interaction. We show the expression of the Kondo temperature as a function of
the AB phase together with its dependence on other characteristics such as the linewidth of the ring and
the finite Coulomb interaction and the energy levels of the quantum dot. The current oscillates periodically
as a function of the AB phase. The amplitude of the current oscillation decreases with increasing Coulomb
interaction. For a given temperature, the electron transport through the AB interferometer can be selected
to be in or out of the Kondo regime by changing the magnetic flux threading perpendicular to the AB ring
of the system.

PACS. 73.63.-b Electronic transport in mesoscopic or nanoscale materials and structures – 73.21.La Quan-
tum dots

1 Introduction

In typical systems of nanometer scale — such as a quan-
tum ring and a quantum dot — the wave nature of elec-
trons contributes a crucial role. In the Aharonov-Bohm
(AB) interferometer [1–12], electron waves travel from the
source to the drain along two different paths of the ring.
The accumulated phase difference between these waves
can be changed by applying a magnetic field. Experiments
show that transport through the AB interferometer with
a quantum dot inserted in one path of the ring has the fol-
lowing striking features: (i) the AB phase increases sharply
by π; (ii) the transmission amplitudes at the various reso-
nances are in phase; (iii) the transport is partially coher-
ent in the presence of a strong intradot Coulomb inter-
action [1–8,10–12]; (iv) in the Kondo regime, the Kondo
enhanced valley conductance is observed over a finite dc
bias applied across the quantum dot [4,5,8]. Hackenbroich
and Weidenmuller calculated the entire scattering ampli-
tude through the AB interferometer and reported on the
phase coherent transport through the quantum dot in the
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frame of the single particle scattering theory [13,14]. They
focused on the AB phase and showed that as a function of
the voltage on the dot, only the amplitude of the current
oscillations is changed. The AB phase is unaffected unless
this amplitude changes sign. In this case, the AB phase
suddenly jumps by π. To consider several factors that may
influence the system, Kim and Hershfield [15] studied the
thermoelectric effects of this system when the quantum
dot lies in the Kondo regime and when it is directly con-
nected with two leads. Electrons can flow from one lead to
the other through the two paths by direct tunneling (lead
to lead) and a resonant tunneling via the quantum dot
(lead to dot to lead). Interference between resonant trans-
port through the quantum dot and the direct channel gives
rise to asymmetric line shapes in the linear conductance
as a function of the bias voltage (i.e. the well-known Fano
effect) [9,16–18]. Bulka and Stefanski [19], and Hofstetter
et al. [20] studied the combination of the Kondo effect and
the Fano effect [21,22]. The electron transport through the
quantum dot showed that the interference of the travel-
ing waves with the localized state can lead to the Fano
effect, for which the current characteristics are strongly
modified in the Kondo regime. The source-drain voltage
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Fig. 1. A schematic description of the AB interferometer.

dependence exhibits a large peak or a dip, depending on
the interference conditions.

How the intradot Coulomb interaction influences the
phase coherence of electronic transport though the AB
interferometer has been the subject of debate. Several
theoretical papers concluded that the intradot Coulomb
interaction induces partial dephasing from the spin-flip
process [23–25], while others argued that the intradot
Coulomb interaction does not induce dephasing effect at
all and transport through the quantum dot is fully co-
herent [26]. These works have been devoted to investigate
the properties of the AB interferometer in the small ring
limit [23–26]. In this paper, we explore the transport prop-
erties of the system in the large ring limit [27,28].

As a first step to address this concern, We consider
a two-terminal AB interferometer (see Fig. 1) with an
AB ring and a quantum dot inserted in one of the ring’s
paths [1–5,7–10]. To investigate the electron transport
through the system in or out of the Kondo regime, we
consider a system with an indirect tunneling channel (lead
to ring to lead) and a resonant tunneling channel via the
dot (lead to ring to dot to ring to lead). In this AB in-
terferometer, the quantum dot can be considered as an
impurity [29] based on the Anderson model [30]. Hence,
we can study the electron transport through the system
as a function of the impurity characteristics and derive a
reliable expression of the Green function for the quantum
dot. To study the transport properties, we obtain the total
current through the AB interferometer using the current
formulation for interacting systems [31]. Here, the current
is calculated using Green functions. The equation of mo-
tion method [32] is used to calculate the noninteracting
Green functions. We then obtain the interacting Green
functions using Dyson’s equation where the perturbation
method is utilized to calculate the self-energy of the quan-
tum dot with respect to the intradot Coulomb interaction.
This method can give high accuracy results [33].

We obtain the self-energy terms of the quantum dot
in and out of the Kondo regime, expressed in terms of
the AB phase and the universal functions involving the
ratios of the temperature and the energy of the system
to the Kondo temperature. Our results show that the co-
herent currents for different Coulomb interactions are in
phase [1,2,13] and that the intradot Coulomb interaction
can decrease the amplitude of the current oscillation. For

a given temperature, the electron transport through the
AB interferometer can be selected to be in or out of the
Kondo regime by changing the magnetic flux threading
perpendicular to the AB ring of the system. This is a new
and interesting transport property of the AB interferom-
eter.

The transport properties of the AB interferometer
have been investigated also by Gerland et al. [34], Amasha
et al. [35], and Fuhrer et al. [36] using the expression of
the Kondo temperature of an impurity not in a magnetic
field found in the works of Haldane [37], and Tsvelick
and Wiegmann [38]. Recently, the Kondo temperature of
the quantum dot in the AB interferometer has also been
studied by Simon et al. [39], and Lewenkopf and Weiden-
muller [40]. Simon et al. had shown the expression for the
Kondo temperature as a function of the AB phase in the
limit of infinite intradot Coulomb interaction in the tight
binding Hamiltonian [39]. Lewenkopf and Weidenmuller
utilized poor man’s scaling and renormalization group ar-
guments to investigate numerically the Kondo tempera-
ture of the quantum dot [40]. They discussed this temper-
ature regime qualitatively in order to illustrate the action
of the stochastic term in their model. The precise form
of the dependence of the Kondo temperature on an AB
phase cannot be predicted.

By using the method of canonical transformations in-
troduced by Schrieffer and Wolff [41] and the renormaliza-
tion group, we find a new explicit expression for the Kondo
temperature as a function of the AB phase, together with
its dependence on the finite intradot Coulomb interaction,
the linewidth of the ring and the energy levels of the quan-
tum dot.

2 Theory

2.1 Model Hamiltonian

We can express the Hamiltonian for the present system,
with the quantum dot as an impurity, as follows

H = H0 + HT + HC. (1)

Here, H0 describes the totally isolated subsystems of two
leads, the AB ring, and the quantum dot, and is given by

H0 =
∑

kσ,α=L,R

εkαcα+
kσ cα

kσ+
∑

pσ

εpc
+
pσcpσ+

∑

σ

εdd
+
σ dσ, (2)

where α stands for the left (L) and the right (R) leads,
while k and εkα are the longitudinal wave number and
the corresponding energy of the electron. The energies of
the single particle states within the ring and within the
quantum dot are εp and εd, respectively. cα+

kσ , c+
pσ, d+

σ (cα
kσ ,

cpσ, dσ) are the creation (annihilation) operators for the
electron in the leads, the ring, and the dot, respectively,
while σ is the spin index. The tunneling part HT consists
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of the couplings between the subsystems, and is given by

HT =
∑

kpσ,α=L,R

(Wα
kpσcα+

kσ cpσ + h.c)

+
∑

pσ

[(
V l

pd + V r
pde−iφ

)
c+
pσdσ + h.c

]
, (3)

where the tunneling matrix elements Wα
kpσ describe the

coupling between the ring and the leads, while the tun-
neling matrix elements V l

pd (V r
pd) describe the coupling

between the left (right) side of the dot and the ring. Ac-
cording to the AB effect, when electron waves from two
paths of the ring meet again, the phase difference between
the electron waves will be an AB phase factor exp(−iφ),
where φ = 2πΦe/h and Φ is the magnetic flux enclosed by
the ring formed by the paths. We attach the magnetic flux
on the right hand side of the dot, hence, V r

pd carries an AB
phase factor exp(−iφ). The intradot Coulomb interaction
Hamiltonian is given by,

HC = Un↑n↓, (4)

where U is the charging energy of the quantum dot. nσ is
the number operator, nσ = d+

σ dσ.

2.2 The Kondo temperature of the quantum dot
in the Aharonov-Bohm interferometer

In the present work, we are concerned with an AB in-
terferometer in the large ring limit. We can assume that
the dimension of the ring is much greater than the size of
the Kondo screening cloud. Hence, electrons in the leads
play a minor role, or Wα

kpσ < V l,r
pd . This assumption will

be used throughout the paper. Thus, the following part of
the Hamiltonian (1) can be utilized to define a coupling
constant J between the quantum dot and the rest of the
system, that is,

H̄ =
∑

pσ

εpc
+
pσcpσ +

∑

σ

εdd
+
σ dσ + Un↑n↓

+
∑

pσ

[
(V l

pd + V r
pde−iφ)c+

pσdσ + h.c
]
. (5)

By means of Schrieffer-Wolff transformation [41], the An-
derson Hamiltonian (5) can be mapped onto the Kondo
Hamiltonian in the form

H̄ =
∑

pσ

εpc
+
pσcpσ +

∑

pα,p′β

Jp,p′c+
pασcp′β .Sd, (6)

where Sd = d+
σ (σαβ)dβ . The Pauli matrices and the spin

of the localized moment of the quantum dot are denoted
by σ and Sd, respectively. This Hamiltonian describes the
localized moment that is coupled to the conduction elec-
tron band by the exchange interaction Jp,p′ ,

Jp,p′ =
(
V l

pd + V r
pde−iφ

) (
V l∗

p′d + V r∗
p′de

iφ
)

×
(

1
εp − εd

+
1

εd + U − εp′

)
. (7)

For εp and εp′ near the Fermi level εF and for εd < εF <
εd + U , the exchange interaction Jp,p′ is approximately

J = −2|Vd|2(1 + cosφ)
U

εd(εd + U)
. (8)

Here, the tunneling matrix elements V l
pd (V r

pd) are assumed
to be real and equal to Vd. The antiferromagnetic constant
is J . To show the relationship between J and the Kondo
temperature, we must utilize the renormalization group.

The renormalization group enables us to write the
renormalization flow equation up to the third order of the
running coupling constant Jρ for cosφ �= −1 as follows,

∂(Jρ)
∂ ln D

= −2(Jρ)2 + 2(Jρ)3 + O
(
(Jρ)4

)
. (9)

Here, D is the cutoff energy or the energy of the largest
excitations while ρ is the density of states of the ring.
Integrating this equation for D′ � D, we obtain

ln
(

D′

D

)
= − 1

2Jρ
+

1
2

ln(2Jρ) + O(1). (10)

The Kondo temperature TK , where the system scales to
strong coupling (very large Jρ), is obtained by setting
D′ = TK in the equation (10), which gives

TK = D
√

2Jρ exp
(
− 1

2Jρ

)
. (11)

Equation (11) expresses the relationship between TK and
J . From (8) and (11), we can deduce the Kondo temper-
ature of the quantum dot for the cutoff energy U as

TK = U

√

−2∆(1 + cosφ)U
πεd(εd + U)

exp
(

πεd(εd + U)
2∆(1 + cosφ)U

)
.

(12)
Here, ∆ = 2πρ|Vd|2 is the linewidth of the ring and φ
is the AB phase. This expression shows the dependence
of the Kondo temperature of the quantum dot on the
AB phase (see also Fig. 3), which does not appear in the
works of Haldane [37] and Tsvelick and Wiegmann [38].
Also, the linewidth ∆ of the ring appears instead of the
leads’ [37,38].

For cosφ −→ −1, we have TK −→ 0 K.

2.3 The total current through the Aharonov-Bohm
interferometer

The current through the system from the leads to the
central region (the ring-dot) is calculated from the time
evolution of the occupation numbers in the leads, Nα =∑

k cα+
kσ cα

kσ(α = L, R), by (see Ref. [31])

Iα(t) = − ie

h
〈[H, Nα]〉. (13)

By using equations (1–4) for (13), one finds

Iα(t) =
ie

h

∑

kpσ

[
Wα

kpσ

〈
cα+
kσ cpσ

〉 − Wα∗
kpσ

〈
c+
pσcα

kσ

〉]
. (14)
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Applying the Keldysh Green function technique found in
the work of Jauho et al. [31], we define two Green functions

G<
pσ,kσα(t, t′) = i〈cα+

kσ (t′)cpσ(t)〉, (15)

G<
kσα,pσ(t, t′) = i〈c+

pσ(t′)cα
kσ(t)〉. (16)

Using G<
kσα,pσ(t, t) = −

[
G<

pσ,kσα(t, t)
]∗

and the model
of noninteracting leads [31], after integrating over time t′
from −∞ to t , we have

Iα =
ie

h

∑

pσσ′

∫
dε

2π

{
Γα(ε)

(
G<

pσσ′ (ε) + fα(ε)

×[Gr
pσσ′ (ε) − Ga

pσσ′ (ε)]
)}

. (17)

Here, the linewidth of the leads is Γα(ε) = 2π
∑

k Wα∗
kpσ

Wα
kpσδ(ε − εkα), α = (L, R). The Fermi distribution func-

tion of the leads is fL(R)(ε). The energy of incoming elec-
trons is ε. The retarded and advanced Green functions of
the ring-dot are Gr,a

pσσ′ (ε).
In the steady state, the current is uniform such that

I = IL = IR. We can symmetrize the current by
I = (IL − IR)/2. Using equation (17) and the assump-
tion that the left and right linewidth functions ΓL,R(ε)
are proportional to each other, the proportional param-
eter can be chosen so that the Green function G<

pσσ′ (ε)
vanishes (see Ref. [31]), and we have

I =
ie

h

∑

pσσ′

∫
dε

2π

ΓL(ε)ΓR(ε)
ΓL(ε) + ΓR(ε)

× {
[fL(ε) − fR(ε)]

[
Gr

pσσ′ (ε) − Ga
pσσ′ (ε)

]}
. (18)

Equation (18) gives us the total current for the system.
The calculation of the Green functions requires the con-
sideration of Coulomb interaction in the quantum dot.

To calculate the retarded and advanced Green func-
tions Gr,a

pσσ′ (ε) of the ring-dot, we first calculate the
retarded and advanced noninteracting Green functions
G

(r,a)0
pσσ′ (ε) of the ring-dot and G

(r,a)0
σσ′ (ε) of the dot using

the equation of motion method. We then calculate the re-
tarded and advanced interacting Green functions of the
dot Gr,a

σσ′ (ε) using Dyson’s equation. These steps are de-
tailed as follows.

Using the equation of motion method yields equa-
tions (19–21) which give the relationship among the non-
interacting Green functions of the quantum dot G

(r,a)0
σσ′ (ε),

the ring-dot G
(r,a)0
pσσ′ (ε), and the dot-leads G

(r,a)α0
kσσ′ (ε) (the

index 0 denotes the noninteracting Green function);

(ε − εd ± iδ)G(r,a)0
σσ′ (ε) = 1 +

∑

p′
(V l∗

p′d + V r∗
p′de

iφ)

× G
(r,a)0
p′σσ′ (ε), (19)

(ε − εp ± iδ)G(r,a)0
pσσ′ (ε) =

∑

kα

Wα∗
kpσG

(r,a)α0
kσσ′ (ε)

+ (V l
pd + V r

pde−iφ)G(r,a)0
σσ′ (ε),

(20)

(ε − εkα ± iδ)G(r,a)α0
kσσ′ (ε) =

∑

p′
Wα

kp′σG
(r,a)0
p′σσ′ (ε). (21)

Here, δ is an infinitesimal quantity. All matrix elements W
and V do not change appreciably on the scale of charging
energy. We can assume that W and V are independent of
k and p. Solving the set of equations (19–21) for G

(r,a)0
pσσ′ (ε)

and G
(r,a)0
σσ′ (ε) with V l

pd = V r
pd = V l∗

pd = V r∗
pd = Vd, we have

G
(r,a)0
pσσ′ (ε) =

Vd(1 + e−iφ)
ε − εp ± iδ

G
(r,a)0
σσ′ (ε), (22)

and
G

(r,a)0
σσ′ (ε) =

1
ε − εd ± i∆(1 + cosφ)

. (23)

For the interacting Green functions, equation (22) can be
generalized in the following form

Gr,a
pσσ′ (ε) =

Vd(1 + e−iφ)
ε − εp ± iδ

Gr,a
σσ′ (ε). (24)

Using Dyson’s equation

Gr,a
σσ′ (ε) =

G
(r,a)0
σσ′ (ε)

1 − Σr,a(ε)G(r,a)0
σσ′ (ε)

, (25)

and substituting (23) to (25), we obtain the interacting
Green functions for the quantum dot

Gr,a
σσ′ (ε) =

1
ε − εd ± i∆(1 + cosφ) − Σr,a(ε)

. (26)

Here Σr,a are the retarded and advanced self-energy
terms, which can be calculated using the method found
in the work of Yoshimori and Kasai [42] for two different
energy and finite temperature regimes of the system.

2.3.1 Current in the Kondo regime

In this regime, the energy ε and the temperature T of
the system are much smaller than the Kondo temperature
ε < TK , and T < TK . Provided that the Kondo tempera-
ture is far smaller than the cutoff energy, TK � D, the low
energy governs the physics of the Kondo effect. For this
reason, we expect all physical quantities to be expressed
in terms of universal functions involving the ratios of the
temperature and the energy of the system to the Kondo
temperature (i.e., T/TK , ε/TK).

For cosφ �= −1, the self-energy (see Appendix) is de-
termined by

Σr,a(ε) = ∆(1+cosφ)

{
ε

TK
± i

2

[(
ε

TK

)2

+
(

πT

TK

)2
]}

,

(27)
where T is the finite temperature of the system, TK is
the Kondo temperature defined by (12), and ∆ is the
linewidth of the ring. The self-energy depends indirectly
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on the Coulomb interaction through the Kondo tempera-
ture.

Using equations (27, 26, 24) and (18), we get

I =
e

h

ΓLΓR

ΓL + ΓR

∑

p

[fL(εp) − fR(εp)] (1 + cosφ)A
[A2 + ∆2(1 + cosφ)2(1 + B)2]

, (28)

where A and B are

A = [εp − εd + ∆(1 + cosφ)εp/TK ] , (29)

and

B =
1
2

[(
ε

TK

)2

+
(

πT

TK

)2
]

, (30)

respectively, and Γα(α = L, R) < ∆ < U , due to Wα < Vd

and the cut off energy is equal to U .

2.3.2 Current out of the Kondo regime

In this regime, the temperature T of the system is higher
than the Kondo temperature T > TK . For cosφ �= −1 and
U > ∆, the self-energy at the Fermi level is determined
by

Σr,a ≈ i∆(1 + cosφ)
ln (T/TK) +

√
ln2 (T/TK) + 3π2/4

ln (T/TK) −
√

ln2 (T/TK) + 3π2/4
,

(31)
where T is the finite temperature of the system, TK is the
Kondo temperature defined by (12), ∆ is the linewidth of
the ring.

Using equations (31, 26, 24) and (18), we get

I =
e

h

ΓLΓR

ΓL + ΓR

∑

p

[fL(εp) − fR(εp)] (1 + cosφ) (εp − εd)
(εp − εd)

2 + ∆2(1 + cosφ)2(1 − C)2
,

(32)
where

C =
ln (T/TK) +

√
ln2 (T/TK) + 3π2/4

ln (T/TK) −
√

ln2 (T/TK) + 3π2/4
, (33)

and Γα(α = L, R) < ∆ < U , since Wα < Vd and the cut
off energy is equal to U .

For cosφ = −1, I = 0 A.

3 Results and discussion

To simulate our results, we introduce a symmetric model
with εd = −U/2. The energy diagram of the dot and its
density of states (i.e., the dotted line) are described in
Figure 2. Resonant tunneling between the two leads occurs
and current flows when an energy level in the dot is aligned
with the Fermi level in the ring and in the leads. When one
of the dot levels drops below the Fermi level in the ring,
this level becomes occupied and the number of electrons

�� � �

��
��

������� ���

	
 ���

Fig. 2. The energy diagram of the quantum dot and its den-
sity of states (i.e., the dotted line). U and εd are the Coulomb
interaction and the energy level of the quantum dot, respec-
tively. εF is the Fermi level of the ring. At low temperature,
there will be a sharp peak at the Fermi level (the Kondo peak).

Fig. 3. The dependence of the Kondo temperature TK on the
AB phase for U = 1 V and ∆ = U/2.

increases by one in the dot. In order to scan the levels
in the dot over the Fermi level, a plunger gate can be
used [1–12]. By changing the plunger gate voltage, one
can change εd, U , as well as the number of electrons in
the quantum dot. Chemical potentials µL and µR in the
left and right leads are e V and 0 V, respectively, for all
situations of the transport which are demonstrated in this
paper.

Figure 3 shows the Kondo temperature dependence on
the AB phase (the solid line), for U = 1 V and ∆ = U/2
(this value of the linewidth ensures smaller than the cut-off
energy U of the Kondo temperature). When the quantum
dot is isolated from the system by setting Vd to 0 V or the
AB phase value to an odd multiple of π, the Kondo tem-
perature approaches zero asymptotically. When the quan-
tum dot is connected to the system or the AB phase is
not an odd multiple of π, the spin exchange between the
dot and the ring exists, and the Kondo temperature has
maxima at an even multiple of π. We also determined nu-
merically the Kondo temperature for several other values
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Fig. 4. The dependence of the total current I on the AB phase
in the Kondo regime for T = 0 K; εp = 0 V; U = 1 V, 0.5 V,
and 0.2 V; ∆ = U/10; and Γα(α = L, R) < ∆ < U .

of the Coulomb interaction U (not shown here). We arrive
at a conclusion that the Kondo temperature of the quan-
tum dot, although dependent on the AB phase, is always
less than 1 K.

The electron transport through the AB interferome-
ter can be in or out of the Kondo regime depending on
the value of its temperature. Figure 3 shows that the
possible temperature T of the interferometer can be in
one of three regions: lower than the minimum of TK

(T = 0 K), from the minimum to the maximum of TK

(0 < T < TKmax = 0.53876 K), and equal to or higher
than the maximum of TK (T ≥ TKmax).

For T = 0 K (T less than the minimum of TK ), the
system definitely works in the Kondo regime. The trans-
port through the system obeys the expression (28) and is
governed by the cotunneling process, which involves the si-
multaneous tunneling of two or more electrons (the Kondo
effect). The dependence of the total current I on the AB
phase in this situation is depicted in Figures 4 and 5 for
εp = 0 V (compared to the Fermi level), and for three
different values of U (i.e., 0.2 V, 0.5 V, and 1 V), with
linewidths of the ring of U/10 and U/2, respectively. Here
(as well as in Figs. 6 and 7), we chose the current when
the quantum dot is disconnected from the ring as the ref-
erence current, hence, the total current also corresponds
to the coherent current. Figure 4 shows that, when the
linewidth of the ring is small or when the coupling be-
tween the quantum dot and the ring is weak, the total
current has constructive interference around an even mul-
tiple of π. Away from the constructive interference, the
current quickly vanishes. Figure 5 shows that, when the
linewidth of the ring is large or when the coupling between
the quantum dot and the ring is strong, the constructive
interference in Figure 4 is now split into two peaks.

Fig. 5. The dependence of the total current I on the AB phase
in the Kondo regime for T = 0 K; εp = 0 V; U = 1 V, 0.5 V,
and 0.2 V; ∆ = U/2; and Γα(α = L, R) < ∆ < U .

For 0 < T < TKmax, the Kondo temperature is
changed when the AB phase (i.e., the magnetic flux) is
changed. This means that the electron transport through
the system is alternatively in or out of the Kondo regime
for the fixed temperature T when the magnetic flux is
changed. The electron transport obeys either (28) or (32).
The total current in this context is depicted in Figure 6
for the fixed temperature T = 0.3 K and εp is from 0 V to
0.1kBTK (kB is the Boltzmann constant), as an example.
The line T = 0.3 K (the dotted line in Fig. 3) intersects
the line TK at points φ1, φ2, φ3, φ4, and φ5 (see Fig. 3).
For the AB phase in ranges: [0, φ1], [φ2, φ3] and [φ4, φ5],
TK > T and the transport through the interferometer is
in the Kondo regime and governed by the cotunneling pro-
cess. The current is described by the solid lines in Figure 6.
For the AB phase in ranges: [φ1, φ2], [φ3, φ4] and [φ5, 5π],
TK < T and the transport is out of the Kondo regime and
governed by the sequential tunneling process. The current
is described by the dotted lines in Figure 6. From these
results, we can conclude that the transport through the
system at a given temperature can be selected to be in or
out of the Kondo regime by controlling the magnetic flux.
This is a new result which can give experimentalists new
and interesting topics.

For T ≥ TKmax, the transport is certainly out of the
Kondo regime, hence, expression (32) is used. The current
as a function of the AB phase is described in Figure 7 for
T = 2 K (T higher than maximum of TK); εp is from 0 V
to 0.1kBTKmax (kB is the Boltzmann constant) , and for
three different values of U (i.e., 0.2 V, 0.5 V, and 1 V),
with ∆ = U/2. Even though the linewidth is large, the
peaks of the total current cannot be split. Since, in this
regime the contribution from the conduction electron spin
moment to the transport of the whole system is negligible.
The transport process is sequential tunneling. An increase
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Fig. 6. The dependence of the total current I on the AB phase
in the Kondo regime (solid lines) and out of the Kondo regime
(dotted lines) for T = 0.3 K; εp ∈ [0, 0.1kBTK ] V ; U = 1 V,
0.5 V, and 0.2 V; ∆ = U/2; and Γα(α = L, R) < ∆ < U .

Fig. 7. The dependence of the total current I on the AB phase
out of the Kondo regime for T = 2 K; εp ∈ [0, 0.1kBTKmax] V;
U = 1 V, 0.5 V, and 0.2 V; ∆ = U/2; and Γα(α = L, R) <
∆ < U .

of the linewidth of the ring only widens the peaks of the
total current.

Figures 4–7 show that as U increases, the amplitude of
the oscillations of the total current decreases. If we take
a look at equation (3), we find that the coupling between
the quantum dot and the ring, i.e., V l

pd + V r
pd exp(−iφ)

and V l∗
pd + V r∗

pd exp(iφ) with V l
pd = V r

pd = V l∗
pd = V r∗

pd , be-
comes zero when φ equals an odd multiple of π. Hence,
the part of the Hamiltonian which describes the tunnel-
ing between the quantum dot and the ring disappears from

equation (3). This means that the quantum dot is isolated
from the system. Thus, the total current for any arbitrary
U reaches a minimum value, i.e., the total current is not
affected by the intradot Coulomb interaction when the AB
phase is an odd multiple of π. The figures also show that
the AB oscillations are all in phase.

The quantum dot can be isolated from or connected
with the ring by controlling the AB phase forward or away
from an odd multiple of π. We can also deduce that the
Kondo temperature of the isolated quantum dot is zero.

Figures 4–7 also showed that the current oscillations
for different values of U are in phase. The transport is
coherent in the presence of Coulomb interaction. These
results are in a good agreement with experiments.

The single-electron transmission through an AB ring
with electron-electron interactions has been studied by
Zitko and Bonca [24]. The integrated transmission prob-
ability is presented as a function of the magnetic flux
for different values of electron-electron interactions within
the ring. They showed that the amplitude of AB oscilla-
tions decreases with increasing electron-electron interac-
tion. This is qualitatively agreeable to our result.

The exact linear conductance at zero temperature
was calculated by Hofstetter et al using Keldysh formal-
ism, the Friedel sum rule, and numerical renormalization
group [20]. They showed that the conductance as a func-
tion of the AB phase reaches its maximum at φ = π/2.
This dependence is similar to a function of sinφ. This
agrees with the result of Konig and Gefen [25] for the AB
interferometer with the small ring limit. Making compar-
isons to the work of Konig and Gefen [25], our self-energy
terms depend on the AB phase of (1 + cosφ) and the
linewidth ∆ of the ring, while those of Konig and Gefen
depend on sin φ and the linewidth of the leads. Konig and
Gefen considered the small ring limit in their system. Re-
sults for the AB interferometer at the large ring limit may
be derived from those for the small ring limit by changing
(1 + cosφ) with sinφ and vice versa. These imply that
the different limits of the ring’s size cause different depen-
dences of the transport properties on the system’s param-
eters.

4 Conclusion

We found a new expression for the Kondo temperature of
the quantum dot in the two-terminal AB interferometer
as a function of the AB phase (i.e., the magnetic flux),
the finite intradot Coulomb interaction, the linewidth of
the ring, and the energy levels of the quantum dot. We
also obtained new self-energy terms of the quantum dot
and the current expression of the system in and out of the
Kondo regime, which were expressed in terms of the AB
phase and universal functions involving the ratios of the
temperature and the energy of the system to the Kondo
temperature. The amplitude of the current oscillation de-
creases with increasing intradot Coulomb interaction. For
a given temperature, the electron transport through the
AB interferometer can be selected to be in or out of the
Kondo regime by changing the magnetic flux threading
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perpendicular to the AB ring of the system. The Kondo
temperature of the isolated quantum dot is zero.

This work was partially supported by the 21st Century COE
program (G18) from the Japan Society for the Promotion of
Science (JSPS), and a Grant-in-Aid for Scientific Research on
Priority Areas (Developing Next Generation Quantum Simu-
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istry of Education, Culture, Sports, Science and Technology
(MEXT).

Appendix A

The Fourier component of the perturbed Green function
is expanded in a power series of U as

G(εn) = G0(εn) −
∞∑

n=1

U2n

(2n)!
1
β

∫ β

0

...

∫ β

0

eiεn(t−t′)dtdt′dt1

...dt2n

⎡

⎣
∑

ji

G0
tiG

0
jt′ [D

2n(1, 2, ..., 2n)]2

⎤

⎦

connected

, (A.1)

where

G0
ij =

1
β

∑

n

G0(εn)e−iεn(ti−tj), (A.2)

G0(εn) =
1

i(εn + ∆(1 + cosφ)sgnεn)
, (A.3)

εn =
1
β

(2n + 1), (A.4)

and β = 1/kBT (kB is the Boltzmann constant).
Noting the relation

G(εn) = G0(εn) + G0(εn)Σ(εn)G0(εn). (A.5)

From (A.1) and (A.5), the self energy is defined by

Σ(εn) = −
∞∑

n=1

U2n

(2n)!
1
β

×
∫ β

0

...

∫ β

0

dt1...dt2n

⎡

⎣
∑

ji

e−iεn(tj−ti)[D2n]2

⎤

⎦

connected

,

(A.6)

where D2n is defined through G0
ij by the following 2nth

order determinant

D2n =

∣∣∣∣∣∣∣∣

0 G0
12 G0

13 ... G0
1(2n)

G0
21 :
: :

G0
(2n)1 ... ... ... 0

∣∣∣∣∣∣∣∣
. (A.7)

At low temperature and low energy region, the self energy
can be expanded as a function of U/[∆(1 + cosφ)] for
cosφ �= −1 and ∆ �= 0, as follows

Σr,a(εn) = ∆(1 + cosφ)

{
0.5

[
U

∆(1 + cosφ)

]2

+0.05
[

U

∆(1 + cosφ)

]4

+ ...

}
εn

∆(1 + cosφ)
± i∆(1 + cosφ)

2

×
{[

U

∆(1 + cosφ)

]2

+ 2.5
[

U

∆(1 + cosφ)

]4

+ ..

}

×
{[

εn

∆(1 + cosφ)

]2

+
[

πT

∆(1 + cosφ)

]2
}

+ ... (A.8)

or

Σr,a(ε) ≈ ∆(1+cosφ)

{
ε

TK
± i

2

[(
ε

TK

)2

+
(

πT

TK

)2
]}

.

(A.9)
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